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ABSTRACT 

Let/~(w) denote the class of plane convex bodies having a width function w, 
where w' is absolutely continuous. It is proved that a body in/~(w) is deter- 
mined (up to translation) by the radius of curvature function of its boundary. 
This result is then used for a characterization of the extreme (indecompos- 
able) bodies in/~'(w) and for a density theorem for Reuleaux polygons inK(l). 

l J  

For a plane convex body K, u e E 2 and real 0, let H(K, u) = sup {(u ,x) :  x ~ K} 

be the support function of K, and let fr(O) = H(K, uo) where u0 = (cos 0, sin 0). 

The support function is continuous, convex, and positively homogeneous. 

The homogeneity implies that a support function is completely determined by 

its restriction to the unit circle, hence there is a one-to-one correspondence 

between the class of plane convex bodies and a class ff of continuous, 2rr periodic 

real functions. This correspondence preserves Minkowski addition and multiplica- 

tion by nonnegative numbers, that is, fx+L(O) = fr(O) +fL(O) and f~K(0) = 2fr(0) 

for convex bodies K, L, and it > 0. The following is a characterization of  the 

class ft. 

DEFINmON. A real function f(O) is said to be circle convex if for all real h 

such that I h l_  we have: 

(1) f(O + h) + f(O - h) >= 2f(O)cos h. 

? The content of this paper is a revised version of a part of the Master of Science thesis written 
by the author under the supervision of Professor Micha A. Perles at the Hebrew University of 
Jerusalem and submitted in October, 1971. 
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THEOREM 1. A real function f is in ff  i.ff it is continuous, 2rr periodic, and 

circle convex. 

PROOF. I f f e  ff then f(O) = H(K, uo) for some convex body K, and f is clearly 

continuous and 2re periodic. By the convexity and homogeneity of H it follows 

for i0 - ~01 < re, that 

f(O) + f(~o) = n(uo) + n(u,)  > n(u o + u,) 

= Iluo + u, IIn((uo + u,)/ll u~ + u, ll) = Iluo + u, Ilf(�89 + ~)). 
But 

(2) tl uo § u~ II = <uo § u,,~o § u,>~ = (2 + 2(uo, u , > )  �89 

= (2(1 + cos (0 - 9~)) ~r = 2 cos (�89 - ~0)). 

Thus f(O) +f(9~) > 2 f(�89 + ~0)) cos(�89 - 99)) which is another form of  (1) 

proved for Ihl < �89 By continuity (1)is also true for Ihl = �89 

Conversely, supposefis  continuous and 2re periodic, and define H(u) = [1 u IIsr 
for u ~ 0, where u = il u II ~cos0., sin 0,), and H(0) = 0. The function H is clearly 

continuous and positively homogeneous. If H is also convex then H is the support 

function of some convex body (see [-4, p. 57]). Thus we only have to show that if 

H is not convex then f is not circle convex. 

If H is not convex there are u, v e E 2 and 0 < 2 < 1 such that 

(3) n(2u + (1 - it)v) > itH(u) + (1 - 2)H(v). 

H is continuous, hence there is some neighborhood of  2 for which (3) still holds. 

There are numbers 0 < g </7 < 1 such that (3) holds for every ~ < 2 </7, with 

equality for 2 = g and 2 = / / .  Let u, = pu + (1 - / ? )v  and vt = ~u + (1 - ~)v. 

It is easily checked that for arbitrary 0 < p < 1, 

n(#u,  + (1 - #)vl) > l*H(ul) + (1 - la)H(v,). 

Hence (replacing u by uz and v by vl) we may assume that (3) holds for every 

0 < it < 1. H(0) = 0, hence u # 0 and v # 0 (otherwise we would have equality 

in (3)). With 2 = II "II/(II u II + IIv II) in (3) we have 

( II ,u iluilv ) ilvli ,,c.) + 1I.16 
n .11 u H + 11o II § II u 11 + II v II > II" II + II ~ II II u I1~ 11 v 11H(v). 

IIv Ilu/(lt u tl + IIv Ib and II u II v/(ll u II + llv II) have the same length, hence their 
sum bisects the angle between them, and its length is 
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(see (2)). Now (3) takes the form 

2 II. II IIv II II. II [Iv II cos (�89189 + Or) ) > 
Ii" II + I1~ II II u II + I1~ 11 

(f(O=) + f(Oo)), 

hence 2f(�89 u + 0v) ) cos (�89 - 0v) ) > f(O,,) + f(Ov) 

and f is not circle convex. Q.E.D. 

We shall from now on refer to the functionfx in _gas the support function of K. 

o 

DEFINITION. Let K be a plane convex body. The width function w x of K is 

wr(O) = fx(O) +fK(O + n) (which is the support function of  K + ( -  K)). 

For a given function w we denote by /~'(w) the class of  plane convex bodies 

whose width function equals w. 

DEFINITION. Let AC 1 be the class of all 2n periodic functions f :  R --, R such 

that f '  is absolutely continuous on every bounded interval. I f  f s A C  ~ we shall 

sometimes say that f i s  AC 1. A function is AC 1 on a set D _ R i f f '  is absolutely 

continuous in the set D. 

THEOP~M 2. I f  K s K(w) and w s AC l, then f x  s AC 1. 

PROOF. From [4, pp. 56-7] it is clear that f~ exists and is continuous iff the 

boundary of K contains no line segments. If  there were a line segment in the 

boundary of K, then there would also be one in the boundary of K + ( -  K), and 

w', the derivative of  the support function of K + ( - K ) ,  would fail to exist 

somewhere. But w s AC 1, hence f~ exists everywhere. 

Let F l ( t ) =  H(K, (t, 1)) and F2(t ) = H(K, ( t , -  1)), where H(K, x) is the 

support function of K. Since fx(O) = ( -  1) ~- 1sin 0 F~ (cot 0) for (i - 1)n < 0 < in, 

for i -- 1, 2, the derivatives F" exist within these intervals and are both non- 

decreasing, by the convexity of F~'. 

The fact that Ks /~(w)  is expressed by Fx(t ) + F 2 ( - t ) =  g(t), where #(t) 

= (1 + t2) ~ w(arc cot t) (see 19]). 

For an arbitrary finite set {( ~, b~)}~=l of disjoint subintervals of [ -  1, 1] we 

have 
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n 

IF~(b,)- Fi(a,)  I + ]~ IF~(b,)- F~(a,) I 
I= I  i = l  

= ~ Fi(bi) + Fi(b,)  - Fi(a,)  - Fi(a,)  = ~ 9'(b,) - 9'(a,) 
i = 1  t = 1  

= E [g'(b,)-v'(a,) I. 
t = 1  

It is therefore clear that if g'  is A C  t on [ -  1, 1] then so are F1 and F 2. But g is 

A C  1 on [ -  1, 1] since 

(5) g'(t) = t(1 + t2) -~ w(arccot t) - (1 + t 2) -~ w'(arc cot t), 

and sums and products of AC 1 functions and a composition of an A C  ~ function 

and a monotone A C  1 function are AC ~ (see [6, I, p. 245]), hence f is AC ~ on 

/4 _< 0 _< 37r/4 and 5:r/4 0 < 77r/4. In the same manner (using the lines (t, 1)and 

(t, -1 ) )  we prove that f e A C  ~ all over the interval [0, 2~]. 

3. 

The radius of curvature of a curve C is usually defined in terms of the second 

derivatives of a parametric representation of C. Here we use a geometric definition 

of the radius of curvature which is applicable to any curve which is the boundary 

of a convex body, without any smoothness assumptions. 

DEFINITION. L e t f r  be the support function of a plane convex body K, and let 

0 be a real number. If  there exists a circle C of radius R such that 

(6) fx(O + h) - f c ( O  + h) = o(h 2) 

then R is said to be the radius of curvature of K in the direction 0, and is denoted 

by RK(0). (C may be a point, and in that case R = 0.) 

DEFINITION. The function Rj(O) = f"(O) + f(O) is called the radius of curvature 

of f.  We have seen that if K ~/~(w), where w ~ AC  1, then Rf~ is defined a.e.. 

A slight change in (1) yields: 

(7) fK(O + h) + fK(O - h) - 2fx(0) > 2fr(0)(cos h - 1) = - 4fK(0)sin 2 �89 

or;  

(8) (fK(O + h) + fK(O - h) - 2fx(0))/h 2 ~_ - fr(O) sin 2 �89189 2. 

It is easily seen that iff"(O) exists then the left-hand term of (8) tends to f"(O) as h 

tends to zero (see [6, II, p. 37]). Hence, 
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f~(O) > -- fr(O ) or 

RSK (0) => 0. 

Let K be a convex body. l f  f~  exists at 0 then K has a radius of 

curvature R in the direction O, and R = Rfr(O ). 

PROOF. Iffx(O) exists then we have 

(10) fK(O + h) = fx(O) + h fk(O) + �89 + o(h2). 

The support function of a circle C of radius R > 0 and center a is 

fc(~) = R + (a,  u , )  

and fc(O) = - (a,  uo). I f fc  is to be a second-order approximation o f f x  at 0 we 

must have, by (10),fx(0) = R + (a,  uo) and f;c'(O) = - (a,  uo). Thus R = fK(O) 

+f~c(O) and, by (9), R is nonnegative and is the radius of  a circle. By equating 

the first and second derivatives o f f r  and fc at 0 we obtain a system of two linear 

equations with a unique solution for the components of a. Hence R is the radius 

of  curvature of K in the direction 0. 

THEOREM 4. Let w be an AC l width function of a plane convex body. 

I. The radius of  curvature function R(O) of  a convex body K E K(w) satisfies 
the following conditions: 

(i) R is nonnegative and measurable. 

(ii) R(O) + R(O + re) = w"(O) + w(O) a.e..  

(iii) f o  R(O) sin dO = W(0). 

ro " (iv) R(O) cos 0 dO = - w'(O). 

II. Let R(O) be a real function defined on the real line, satisfying conditions 

(i)-(iv) of Part I. Then 

(i) there exists a convex body K ~ g(w) such that R(O) = RK(O ) a.e. 

(ii) K is unique, up to translation, that is, if  g(O) is an AC 1 function and 

Ro(O ) = R(O) a.e. then g is the support function of a translate of K. 

PROOF. We shall first prove Part II. 

Definef(0) = fgR(tr) sin(0 - tr)dtr (see I2, p. 115]). 

(a) f circle convex. Both sides of (1) are even functions of h, so it suffices to 

prove (1) for 0 < h < �89 
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fo O+h f(O + h) + f(O - h) = R(a) sin (0 + h - a)da + 

Israel J. Math., 

fo e-~R(u) (0 - -cr)d,r sin h 

= R(a) (sin (0 + h - a) + sin (0 - h - a))da 

r~ fo~ + Jo R(cz) sin (0 + h - a)da + (a)sin (a - (0 - h))d~ 

I ~ = 2 R(a) sin (0 - a) cos h da + I1 + I2 = 2f(0) cos h + I l + I2. 

The integrands in I1 and I2 are non negative, hence I1 + I2 _-> 0 and (1) holds. 

(b) f '  absolutely continuous. 

1 
f '  = lira -h- (f(O + h) - f(O)) 

-hl / f~ fo ~ ) = lim [ 1  R(cr) sin (0 - ~r + h) da - R(a) sin (0 - a)da 
h~O 

sinh /,o+h 
= limh..,o ~ Jo R(a) cos (0 - a)da + limh..,o COShh - 1 

/.o+h 
+ limh..,o ---h--C~ h Jo R(a) sin (0 - u)da. 

cos h - 1 
But lim 

h-,o h 
cos h /.o+n 

also have lim T | R(a) sin (0 - a)da = 0. Therefore 
h~0  dO 

f ~ R( a) sin(0 - tr)da 

= 0 and since 0=< I s i n ( 0 - ~ ) 1  = [h I for 1 0 - ~ 1  ~ [hi we 

fo ~ :o' fo' f '  = R(tr) cos (0 - tr)da = cos 0 R(tr) cos a dtr + sin 0 R(tr) sin a dtr. 

The integrals exist, by conditions (iii) and (iv) of  Part I, hence f '  is absolutely 

continuous. 

(c) f(O) + f(O + n) = w(O). Let v(O) = f(O) + f(O + n). By (b) we have 

f: f7 v'(O) = R(a) cos (0 - a)da + R(tr) cos (0 + n - tr)da 

fo ~ fo ~ r~ = cos 0 R(cr) cos r d~z + sin 0 R(r sin a da + cos (0 + z 0 Jo R(a) cos ada 

/ .o+~ 

+ sin (0 + 7 r ) |  R(a) sin r da 
./o 
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and v"(O) = R(O) + R(O + ~) - v(O) a.e.. 

Therefore v and w are two solutions of the differential equation u"(O)+ u(O) 

= R(O) + R(O + ~) a.e.. Both v and w have absolutely continuous derivatives and 

the same initial conditions since v(0)= f ( 0 ) + f ( T t ) =  f~R(a ) s in (u -  a)de = 

w(0), by condition (iii) of Part I and v'(0) = f '(0) + f ' ( r 0  --- f~R(e)cos(rc - a)da 

= w'(0), by condition (iv) of Part I. By the uniqueness theorem for differential 

equations (see [3, Ch. 2]) v = w or f(O) + f(O + re) = w(O). 

(d) f is 2re periodic. This follows immediately from (c). 

(e) R~(O) = R(O) a.e.. By differentiating 

fo f0 f '  = cos 0 R(e) cos a de + sin 0 R(e) sin a de 

we obtain 

fo ~ f; f"(O) = - sin0 R(e)cose  de + R(O)cos20 + COS 0 R(e)sin e de + R(O) sin20 

= R(O)- f (O)  a.e..  

It is clear that equality holds in every 0 where R(0) is continuous. 

By Theorem 1, f is the support function of a convex body K. K is in /~(w) by 

(c) and the radius of curvature of K equals R(O) a.e. by (e) and Theorem 3. 

The uniqueness (up to translation) of K follows from the fact that every ~0 with 

an absolutely continuous derivative which satisfies ~0" + ~ = 0 a.e. is of the form 

~0(0) = A cos 0 + B sin 0 (see [3, Ch. 2]). Hence the general solution of g"(0) + g(O) 

= R(O) is 

0(0) = R(a) sin (0 - a)da + {a, uo} = f(O) + (a, uo) 

which is the support function of a translate of K. 

Now we can prove Part I. By Theorem 2, f~  e AC 1 hence f~  exists a.e. and 

f~(O) is an integral off~:  Therefore f~' is measurable and so is R j- K = f ~  + fK. By 

Theorem 3, RK(O)= Rf~(O) a.e., hence RK is measurable. Condition (ii) of Part I is 

obvious by Theorem 3. It is seen by the proof of Part II of this theorem that w* 

may assume that f~(O) = f~ (0 - a)de. Thus we have 

w(0) -- f(0) + f(n)  = R(e) sin (r~ - e)da = R(e) sin e de 

K K w'(O) = f'(O) + / ' ( tO  = R(e) cos(rc - e ) d e  - -  - R ( e )  c o s  e d e  
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which completes the proof. 

The width function is not indispensable for Part II (i) (the existence part) of 

Theorem 4. The following version can be proved in quite a similar way. 

THEOREM 4*. For any measurable nonne.qative, 2re periodic function R(O) 

:o'" f? satisfying R(O) cos 0 dO = R(O) sin 0 dO = 0 there exists a convex body K 

whose radius of curvature equals R(O) a.e. .  

However, in general K is not unique. For example if K is any convex polygon, 

then RK(O) = 0 a.e..  

For  any function R(O) satisfying the conditions of Theorem 4* there is up to 

translation a unique body K with an AC 1 support function such that RK(O) = R(O) 

a.e., but having an AC ~ support function has no obvious geometric meaning. 

o 

The radius of curvature R:  = f "  + f i s  additive, and it is natural to examine it in 

connection with addition of convex bodies. 

DEI~INITION. A convex body K e F,(w) is said to be extreme in /~(w) if K 

= 2K t + (1 - ;t)K2, with K1, K2 e X(w) and 0 < 2 < 1, implies that K1 and K2 are 

translates of K. 

THEOREM 5. Let K ~ ~(w). K is extreme in I~(w) iff for  almost all 0 either 

R(O) = 0 or R(O + ~) = O. 

PROOF. The radius of curvature is additive, so K = 2K~ + (1 - 2)K2 implies 

R = 2Rx, + (1 - 2)Rr2. But 0 __< Rr,(O) ~_ w"(O) + w(O) for all 0 and i = 1, 2 

hence if a.e. R(O) = 0 or R(O) = w"(O) + w(O) then Rr,(O) = Rx2(O) =R(0) a.e.. 

Part II (ii) of Theorem 4 implies that K1 and K2 are translates of K, hence K is 

extreme in K(w). 

Suppose now that K ~ •(w), f and R are its support and radius of curvature 

functions respectively. Let A be a set of positive measure on which 0 < R < w" + w. 

We may assume that A _ [0, r~] and that there is a positive number e, such that 

e < R(O) < w"(0) + w(O) - e for 0 e A. Consider the linear space F(A) of all real 

functions on A of the form a + b sin 0 + c cos 0, with the inner product 

( f '  g~ = fA f(O)g(O)dO. 

F(A) is a 3-dimensional inner product space, therefore there exists a function 
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g # 0 in F(A) which is orthogonal on A to both sin 0 and cos 0. For a sufficiently 

small positive 2, [29(0) 1 < 8 for all 0 in A. 

Define T(O), first for 0 __< 0 < 2zr, by 

20(0) for 0 ~ A  

T(O)= "~-2g(0)  for 0 ~ A +  
! 
~- 0 otherwise 

and then extend T to be a 2n periodic function on R. 

] T(O) [ < s for all 0 e A and T(O) = 0 for 0 < 0 < 2n outside A and A + n, hence 

0 <__ R(O) -I- T(O) < w"(O) + w(O) for all 0. By definition we have S~T(O) sin 0 dO = 0 

and SgT(0)cos 0 dO = 0. By Theorem 4, R + T and R - T are a.e. the radius of 

curvature functions of bodies in g'(w). Let K + and K -  denote two such bodies. 

T #  0 on a set of positive measure hence K + and K -  are not translates of K. But K 

is a translate of �89 + + K-) ,  hence K is not extreme in /~(w), and the proof is 

completed. 

5. 

On first thought it may seem that the extreme bodies in g(w) must have vertices 

or corner points in almost every direction or its opposite. 

A simple example, for the ease w(O) = 1 (where g'(1) is the class of sets of  

constant width 1) shows that this is far from being true. In fact there exists an 

extreme body in K(1) whose radius of curvature takes both values 0 and 1 on 

sets of  positive measure in every interval. Such a body is smooth, that is, it has no 

vertex (interval of  support directions with one fixed point of support). 

In order to construct the support function of K we first divide the interval 

[0,�89 into two measurable sets A1, B1 in such a way that every interval [a, b] with 

0 __< a < b < �89 intersects both A1 and B 1 in sets of positive measure (see [5, p. 99]). 

Define A 2 - -  B l -b �89 B2 = A~ + �89 and A = Ax W A2,  B = B 1 k. )B 2 k.) {1}. 

Thus p(A) = g(B) = �89 

Now define a homeomorphism ~0: [0, 1] ~ [0, �89 by q~(~) = arc cos (1 - 0 .  

We have qo- l (0)= 1 - c o s 0 .  

Define a function R(0), first in the interval [0, �89 by 

{10 if 0~tp(A) 

R ( 0 ) =  if O~q~(B). 

Extend the definition to [0, ~) by R(�89 + 0) = R(�89 - 0) for 0 =< 0 < �89 and 



158 M. KALLAY Israel J. Math., 

then to the whole real line by: R(O + n) = 1 - R(O). R is an even function with 

respect to �89 on (0, r0, hence fiR(O) cos 0 dO = 0 and 

fo f. R(0) sin 0 dO = 2 R(O) sin 0 dO = 2 d(1 - cos 0) 
(a ) 

= 2f~(,4) d(9-1(0))= 2fad '  = 1" 

By Theorem 4, R(O) is a.e. the radius of curvature of  a convex body K in K(1). 

K is smooth because if K had a vertex then Rr(O) would vanish on a whole 

interval. 

o 

Our last application of  Theorem 4 is in the theory of bodies of constant width. 

A Reuleaux polygon is a body in K(1) whose boundary consists of a finite 

number of  circular arcs of radius 1. Its radius of curvature function takes only the 

values 1 and 0, each on a finite number of intervals between 0 and 2~. Reuleaux 

polygons of  width 1 are known to be dense in/~(1) with respect to the Hausdorff 

metric (see [,1]). Here we prove a somewhat stronger version of this density 

theorem. 

THEOREM 6. Let K be in /~(1). For each 8 > 0 there is a Reuleaux polygon 

Ks with support function 3", satisfying the following conditions. 

(i) max [fK(O) - f , ( o ) [  = < 5. 
O<O~_2n 

(ii) max [f~(O)-f~(O)]<8.= 
o_~0_~2~ 

(iii) K s has no more than 2 Ira/e(2) �89 + 3 sides, and all its vertices with 

support directions between 0 and ~ lie on the boundary of K. 

PROOF. Let n = [7r/8(2) ~] + 1 and let ai = irc/n (0 < i <  n). In the interval 

[,ai-1, ai] there exists a one-parameter family of subintervals [,bi(2), q(2)] for 

0 _< 2 _< 1 with hi(O) = ai-1, ci(1) = a ,  hi(2), and ci(2) continuous, nondecreasing 

functions of 2, such that 

fa 
al f c~O.) 

(11) ,_R(O)sinOdO = Jb,(x) sinOdO 

for all 0_<2_<1. 
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Define a new measure v on [0, n] by v(E) = resin O dO. For any integrable 

function R we have 

fe R(O)cosOdO = fe R(O)cotgOdv(O) (12) 

and 

(13) 
f a  l 

v[bi(2), ci(2)] = R(O)dv for 0 < 2 < 1. Now cotg0 is 
t-1 

decreasing in [0, hi, hence 

fc,~o) f ~  ?c,m cotg 0 dv(O) > (0) cotg 0 dr(O) > | cotg 0 dr(O). 
J bt(O) i -  Jb i (1 )  

Thus, for a suitable choice of ;t we have 

(14) IR(O) cotg 0 dr(O) = cotg 0 dv(O). 
d b~(X) 

Let b i = bi(2 ) and ci -- ci(2) for that choice of 2. Then for each m (0 < m _< n) we 

have, by (12) and (14) 

f: R(O) cos 0 dO = cos 0 dO 
i = l  

(15) 

and by (11) 

(16) f'o ~ R(O) sin 0 dO = sin 0 dO. 
i=1 l 

Define a function Re(O), first in the interval [0, n) by 

)" 1 if b i < 0 < C i for some i 
R~(O) 

0 otherwise 

and extend the definition to all real 0 by R~(O + ~) = 1 - R~(O). By (15) and (16) 

for m = n it is clear that R~(O) satisfies the conditions of Theorem 4 with w = 1. 

Therefore R~(O) is a.e. the radius of curvature function of a convex body K~ with 

support function f,(O) = j'o~ sin (0 - o)&r. But R,(O) is piecewise continuous, 

hence R~(O) is the radius of curvature of K, except for a finite number of directions 

(see the proof of  Part II (v) of Theorem 4). It is readily seen that the points 0, bt, 

c ,  ~, b~ + ~, c~ + r~, 2re divide the interval [0, 2re] into an even number ,  at most 

4n + 2, of subintervals and that R~(O) assumes on these intervals the constant 

values 0 and 1 alternately. Since the solution of the differential equationf" + f  = R 
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on any interval is unique up to translation, it follows that the intervals with R = I 

correspond to circular arcs of radius 1 on the boundary of K,  and the intervals 

with R = 0 correspond to vertices of K. Thus K,  is clearly a Reuleaux polygon 

with at most 2n + 1 = 2[~/e(2)~] + 3 sides. 

For each 0 < 0 < n there is some i for which 

IO-a , I  <�89 l a , -a ,_ l ]  = ~/2n__.8(2) -~. 

By (16) we have 

Ifo' I l l /  I I(0) = (Rx(a) - R,(a))sinad~r = (Rx(a) - R, (a) )s inada  < e(2) -~, 

and similarly by (15) 

Ifo I J(0) -- (R~(a) - R.(o'))coscrd~ _N e(2)-k 

Since K can be replaced by any translate of K, we may assume that 

fx(O) --- S~Rx(~)sin (0 - a)d~, and for 0 < 0 _< ~ 

]fx(O) -f,(O) I = (R,,(a) - R,(a))sin(O - tr)da ~ [sinOlJ(O) + ]cosO] I(O) 

< e(2) -�89 (Isin01 + Icos01) 

and similarly lf;c(O)-f'(0)[ < [sin01 I(0) + I cos o IJ(o) __< 5. 

These inequalities hold also for n < 0 < 2n since 

fK(O + n) = 1 -fK(0);  f~(0 + rr) = 1 -f~(0). 

The point of contact of a convex body K c E 2 with a support line which has 

an outer normal uo is completely determined by ]'~(0) and f~(O). (In [4, pp. 56-7] 

it is shown that the point of contact is determined by the support function 

H(K, u), and its partial derivatives. The connection to fk(O) and fK(0) is obvious.) 

By the construction, fx(ai)= f,(a~) and f~(a~)= f'~(a~). It follows that all the 

vertices of K with support directions between 0 and ~r lie on the boundary of K. 

R~MARK. This paper was originally written for the special case w = 1 (constant 

width). The generalization was motivated by Ruth Silverman's characterization 

of  the indecomposable bodies in /~(w) [9]. Unfortunately, the characterization 

given in [9] is incorrect, and there is a mistake in the proof of one of the lemmas 

([9, Lem. 6]). 
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